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1. Summary

This paper deals with time series which are stationary in the mean but
which have a nonstationary convariance function which is described by a
certain parametric model. The non-stationarity results from changes over time
of the parameters in the model,

The first part of this paper discusses the concepts of stationarity,
covariance, and the spectrum. The concept of temporal spectrum is introduced
and applied to the analysis of the nonstationary time series.

The second part deals with the parametric model, Statistics related
to the rate of gero-axis crossings and the rate of relative maxima ard minima
of the time series are used to estimate the parameters in the model, These
estimates are easy to compute from discrete observations of the time series,
Expressions for the variances of these estimators are given as a function of
the parameters and the sampling period,

2. The Spectrum

In the analysis of time series data, a major problem is the character-
ization of the time series by means of some parameters or functions, For
example, if X(t) denotes the signal picked up by the antenna of an FM radio,
the AGC (automatic gain control )eircuit estimates the average power E(xz(t))
and corrects the gain to equalize variations over time in this parameter. In
order for this system to be effective, the average power parameter must be
varying slowly enough so that we can obtain reasonably accurate estimates
of the parameter given a finite record of X(t). We must be able to distinguish
changes in the characterization parameters from transient changes, just

"ordinary noise,"of the time series,



The quest for slowly varying basic parameters leads us to the concept
of stationarity, A time series X(t) is called strictly stationary if for all
n, the joint distribution of {X(tl), ...,X(tn)} is the same as that for
(x(t.l * h)yeesX(t * h)} for all h, Doob [2]. X(t) is called weakly
stationary if the density of X(t) is the same for all t, and for all t, and t,,
the joint density of (X(t.l), X(tz))depends only on l t, - t.ll « Then the power
spectrum S(f) and thc autocovariance function R(7-) are functions associated
with X(t), where

s(f) -/ exp (R fUR(T) 4T

(1) e
R(T) =E (X(t+7) X(¢))

With the asswintion that , | R(T) I d T°< oo, we then have
(o]

oo
Riy) =2 / cos 277 £ Ts(t)df
0

and by differentiating and setting - = O, we have

R"(0) = ~(27)° ffzs(f)df
(2)
r4)(0) = (2m)* [ Prs(edar

If we normalize X(t) such that E(X(t)) = O and E(Xz(t)) = 1, then the
even function, R(7T") = R(=T), is called the autocorrelation function and
S(f) is called the power spectral density., The word density applies since

fs(f)dr = E(x*(t)) from (1) and (2, and thus f S(f)df = 1,
Given a finite record of X(t), of length T seconds, there are several ways

to obtain an estimate of the spectrum, see Bartlett (1) and Grenander and



Rosenblatt (3], These digital procedures or a good analog spectral analyser
gives, as a function of the observations in the record of X(t), a random

function s.r(r) such that for any band (ro, rl), (Middleton (14])

(3) /1 Sp(£)dt -f—-v/'l S(f)df a8 T— oo .
%o fo

It can be shown that if we pass X(t) through a linear, time invariant
filter which filters out (analogous to an optical filter) all frequencies

except those in the band (fo,tl) , then with Xto, £, (t) denoting this

filtered time series,

1
L S(f)df = E{(X2 OBW
() / (0t =505, 7))

0
The expscted value of the square of a time series is called the average power
of that series., Thus (4) shows that the area under S(f) for f in (fo, fl)
gives the average power of X(t) in the band, and (3) shows that the integral
of S.r(f) over (fo,fl) is a consistent estimate (Wilks [13]) ) of this average

power,
Moreover, if X(t) is ergodic (Doob [ 2) ) then with probability one

T
o

() e

R(T) = Um_, g T'lf X(t +T) X (t) at

o



By using the Chebychev inequality and the Gauseian nature of X(t), we have

from (5)
Te ¥

(6) Rp(T) -T'I/ X(te TIX(t)dt

[+)

. 1
= R(?) o, ()

where R, is called the sample autocorrelation of X(t) and Op(‘l"l)-O 0

in probability, Thus from (4) and (6) we have

T f
-1 2 l &1
(7) T X (t)dt = s(e)dr + o (T
VAT R
0

which suggests that we use the above time average of l? .0 the filtered
(1 up §

time series, as sn estimator S.I.(f) of the average power for £ in the band

(50 1)

To do spectral estimation as above, using analog methods, requires a
set of narrowband filters covering a large frequency range.

But suppose that X(t) is stationary in the msan but not in the covariance,
or more epecifically that although E(X(t)) = O for all t, the joint density
of (X(t), X(t +T')) depends on t. In this ocase, S.I.(f) is an estimate of the
average power for f is a band, but awraged over distribution changes during
the sampling period. The basic difficulty is that we must distinguish variations

in X(t) due to"ordinary noise" versus changes over time in the structure of the



time series. In order to handle the problem we would like to characterise
the nonstationary X(t) by some generalisation of the power spectrum, such
as proposed by Silverman [9]. Other extensions of spectral mesthods to
nonstaticnary processes are given by Page [11) and Lampard (12). However,
we will treat the problem in somewhat of a heuristic manner.

We will restrict ourselves to stationary Gaussian time series X(t)
with S(X(t)) = 0 and E(X3(t)) = 1 for all t, and such that given a record
of length T unite the joint density of (x(t1), X(tz)) is & function of
| ¢, - Y| for t, and t, in the T unit period, i.e. X(t) 1s weakly
stationary durirg that period.

Furthermore, assume that Lhere exists a ’L/.< T for Itz - t.', >’L"

there is a constant A and an integer m such that
(8) | E(x(e,)x (e, )) l <Aty - 4|

This means that for lags greater than U Rhe time series is approximately
uncorrelated.
Now define a function S(f), called the temporal spectral density, such

that as a generalization of the definitions (1) and (2)

-
(9) s(f) = 2/ cos 2Tt TR(T)M T
0

where for |T|< T
(10) R(T) = E(X(t + T IX(t))



It can be shown using (7), (8), (9),and (10) that

fl 2 1 T 1
(11) S(£)df = E(x (t)) + o(t™}) o] X3, , (t)at + o (17}
£.,f P9 ¢ P
t (18 ¥ 0 (0 .0n8 |
0
where Xfo’ ¢ is the result of a linear narrowband filtering operation on
1

X(t) for the (to, !'1) band,

*
Moreover for l’t’l < T by taking the inverse cosine transfom,

(12) R(T) 4 2 f” cos 27 £ v S(f)ar
0

for the temporal spectrum S(f), arnd given the condition that E(X3(t)) = 1,

we then have
oo

/s(r)dr 4 .

=00

Suppose we have a finite record of X(t) during which X(t) is etationary
and we wish to estimate the temporal spectral density S(f) for £ in some
frequency band., "e could use the method of narrowband filtering (see (7) and
(11) ) to estimate S(f). However, in many applications the period of stationary
is 80 short as to make the spectral estimates which are functions of obeserva-
tions taken in the period, quite inaccurate, For example, the ambient sea
noise, as measured by hydrophones placed in the deep ocean, is often quite
nonstationary due to sudden changes in the paths of propagation of
sounds in the ocean. If we wish



accurate spectral estimates for f in a relatively wide band, in many applica-
tions we have to take a record of X(t) which is longer than the period of
stationarity, and thus the temporal spectrum approach is not meaningful since
we have averaged over a change in structure,

However, suppose we know from theoretical considerations, or fram past
experimentation, that when the time series has a period of stationarity,
the temporal spectral density S(f) is one of a certain parametric family of

density functions, For example, suppose we can say that

(13) 3(f) = 2_;;(7) ("l’f’ Tl -A,f,

where r and A are two unknown parameters. In this case we have S(f)
described by a family of Gamma densities (Figures 1 and 2), For different
astationarity perids, r and A take different values, We thus have reduced
the nonstationarity of X(t) to the changes of two (or in general a finite
set) parameters in the temporal spectrum. From (12) we see that the auto-
correlation function R(T’) is a nonstationary function of these time varying
parameters,

However, a stationary X(t) with a spectral density as in (13) is

deterministic (Doob (2]) since
®

/ (1 + r"")°1 log S(f)df = =
o

» »
This means that siven a time t , the random variable X(t ) can be estimated

[ ]
with zero variance by a random variable Y(t ) which is the result of a certain



linear operation on the record of the infinite past, 1.e, on X(t) for all
L
t <t ., But since we are dealing with nonstationary time series, results

based upon observations over the infinite past do not seem to be relevant,

3. Parametric Model for the Temporal Spectrum

Suppose we make discrete observations of a Gaussian time series X(t)
during a stationary period where the temporal spectrum S(f) is a Gamma density

parameterized by r and A - as is given by (13), i,e.

(13)*  s(f) = ?F(KF)" )™ e M £50

We wish to estimate r an? A from the discrete ~bservations, The estimatore
are of no use if,in order to obtain relatively accurate estimates of r and A,
we need a sampling period longer than the period of stationarity of X. Any
estimators r and A based on observations taken over time fram X(t) will
have two components of randomness, the first due to the stationary random
fluctuations over time of X(t), and the second due to the changes in the
covariance of X(t) which recur from time-to-time,

The rate of zero-axis crossings of X(t) in an interval (0,T) is a

1/2 as T— o, and the rate

consistent estimator of p = 2[f £°s(£)ar)
of relative maxima and minima of X in (O,T) is a consistent estimator of

B = 2t [ ths(niar/ [ Psinrarit/? . We will express r and A as functions
of B and B., r-e- f(B.B‘) and A = g(a,ﬁ‘), and estimate r and A by

re= t(a,'é‘) and A = g(ﬁ,ﬁ‘) whereg is related to the rate of sero-crossings
and ,f\!‘ is related to the rate of maxima and minima, but they are easy to

compute from discrete clipping of X(t), which we will describe later. The



[ 18
.

consistency of the estimators is not important due to the nonstationarity ef
X(t). For the estimators to be of real value in this context, their variances
should decrease relatively rapidly with increase in the period of sampling.
In this work we will obtain the variances for the estimators of B and B‘ as
functions of r, A, and T. For the case of low frequencies, that is for the
mean frequency f Jf | S(£)df = r/A in the range 20 cps to 4O cpe,
calculations (Hinich ( 4]) show that the s‘andard deviation of the estimates
of B and B‘ is less than 10% of B for a sampling period of two seconds and
less than 5% of B for a sampling period of ten seconds.
Suppose we sample X(t) in a discrete manner by observing every 7 time

units whether the time series is positive or negative, If X is positive,
we mark a 1, if negative we mark a = 1, i.e., we define a discrete time
series X‘ where for each integer k

1 1rx(kr)> O
(W) X (kT) -

-1 irXx(kP)< O

This is simply the discrete version of infinite clipping (Lawson and Uhlen-
beck [ 5] ). With the advent of high speed sampling techniques using digital
electronics, it is a standard procedure to subject a random process to
infinite clipping in order to reduce the data and put it into a convenient
form (a string of binary numbers) for real-time analysis, The estimators

for this parametric model have the useful property that they are easy to

obtain from the clipped process,
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[ ]
Now let N(T,Y) denote the number of transitions of X during the

interval (0,T) from -1 to 1l and from 1 to =1, From Lemma 3 we have

(15) Um,_ _ N(T, v )/T =840 (PF)
™

where 92 - [ ° S(£)df and thus we have from (13),
-

82 -4 A2 r(r + 1), Thus from (15), we have

16)  Um NI, = (x(r e 1) Y24 0 (1)

The rate of binary transitions of X‘ = N(T,T')/T - 1s intimately
conncected with the rate of zero-axis crossings of X provided the process
X is 'well-behaved.' To argue heuristically, select T’ sufficiently small
such that in any ‘T unit interval, the probability of two or more axis-
crossings can be neglected, Since either there is one crossing or no
crossing in each interval (k @,k 2 + ), the number of axis-crossings
of X in the broad interval (0,T) is just N(T”t’) and thus N(T 7 )/T 1s the
rate of axis-crossings of the time series,

In ordsr to give the variance of N(T , 7 )/T we need the autocorrelation

R(?) of X(t) . By taking the cosine transformation of (13), we have

(17) R(T) = Re (1-20LT)-r

where 1 is the complex unit and Re z is the real part of a complex s, We

shall restrizt r to be an integer for computational convenience in obtaining

the sampling variances of several estimators,
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Using (17) in Lemma 4 along with the relations

R' (7) =-27f m@-2AT) -re 1)

(18)
A

where R’ is the first derivative of R with respect to 7 and R" is the

second derivative, and changing variables t = 27]‘{;, we have

(19) lin,t,__. o Var (N(T, T )/T)

29 T*

2

- %ﬂ"[%j (l-ﬁ?)lr(t)dt’(ﬁ)l/zl
0

where
i p =2 (r(r1)) 1/
[b_(+)1%/2
(20a) lr(t) - > (1« cr(t)arctan cr(t.)] -1
1l - . (t)
2 2
(2m) b (t)=[1-e (t)][1-0_, ()]
2
2234, () [1-e(t) e (t)])

+ (I e
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r 2 2
1 or(t)dr (t) - eﬁz(t) (1 (t))

[1-e2 ()12 [b_(0)11/?

(200) o, (t) =

r* r+ 2541
L (2J0

1
2l ¢
I G (V')

(200) 4 (t) = r 1R (x) - e &7 "

r* r J by 23
: Gy (7 Q)

(20e) (t) = R(rx) =
E - ne®d 3

whore { § if r is even
.
r -

221 it ris odd

®
Remember that r/A = 2/ ¢ S(f)df which is the "mean" frequency of the

o

temporal spectrum ,
We will now discuss the estimator related to the number of maxima and

minima per unit interval, Define the derivative process
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X(t+h) = X(t)
h

(21) X'(t) = Um _ o

where the convergence is in the mean (Doob [ 2] ). If X is a Gaussian

process with an autocorrelation R such that

(22) R(T) =1 + R'(0) -’"2:2- « &%) (0) {}l: + 0(7°) then X' exsts
almost everywhere and is also Gaussian (Doob [ 2] ). Moreover, it can be
easily shown that the autocovariar:e of X. iy -R"(’t’), where R" is the
second derivative of R with respect to T . If we normalise X' by

defining a process

(23) Y(t) = (R (0) 1'1/2 x' (L)

we have E{Y(t)} = 0, E{Y’(t)} = 1 and

(24)  E{Y(t+ T )Y(t)} = -R—%-Z)’:)—
R (O

If we let D(f) denote the spectral density of Y, we have from (2) and (24)

(25)  JPPo(e)ar = (277)72 (&"(0)172 r %) (0)
- [ s(nat/ frzs(r)dr



u

The process X has a relative maxima or minima at t if and only if
]
X (t) = 0, and thus 1f and only 1if Y(t) = O, If we let M(T, T7) be the
number of transitions from 1 to -1 and from =1 to 1 of the discrete

process

) 1 4f Y(k¥) >0
(26) Y (kT) = {

11 Y (kT) <0

for k = 0,1,...,T/% , then for small T , M is approximately the number
of relative maxima or minima in the interval (0,T). Therefore M(T, ¥ )/T
is essentially the rate of maxima and minima of X, Using (23), (25), and

(26) in Lemma 3, we have

(21) m,_  WT,T)/T=8 +0 (TP
- 20 /*s(0)atl/ Ps(£)ar)? « o(2?)

| ]
where B 1is the expscted number of relative maxima or minima per unit

interval (Rice [ 7] ).
*
However we do not have to differentiate X in order to estimate 8 . Let

us define another discrete process

1 4 X((k+1) T) > X(k7)

(28) X**(kT ) =
-1 if X((k*1) T) <Xx(kT)

From the definition of X and (28), it is fairly clear that the rate of

* %
binary transitions of X for sufficiently small T° is also M(T ,')/T.
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Applying (27) to the case of a Gamma spectrum, we have

2 1/2
(29) Um, o M(T,T°)/™ p* = [(r+2) (r+3) )

since from (13)
S4S(2)dr = ABr(r+1) (r+2) (r+3)

We can obtain the variance of M(T,T")/T feirly easily based on the deriva-

tion of (19). Applying (18) to (24), we have for the autocorrelation of Y,
(30)  E{X(ts T)Y(t)} = Ro(1- ZLLT ) ~(r*2)

which, from (17), is just the autocorrelation of X with r replaced by r+2,
‘ -
Setting — T** =% Tandp =™ [(++2)(r+3) 12 (Just B with

r+2 instead of r), we have

(31)  Um _ _Var(M(T, T )/T]
27°T

2
- P [ 2 [ (1= 5orws ) 8, (t)at

(o]
. (I*2y 1/2
B9 )

which is the variance of N(T, “ )/T as given by (19) and (20), but where

r is rep ~~ed by r¢2,
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We will now propose estimators or r and A. From (16) and (29) we have

]
(r+2)(r+ 1/2
B - C5EERE Voo
which yields

2 a2
e (8" s ws g2 e pt)t?

2(8° - p%)

2
(32) e8P

Let the estimator of r by T where

g 3PP o b o 1 R 0 i V2
2(M-°)

for N = N(T,Z) and M = M(T ,7’). Thus from (16) and (29) we see that T is

a consistent estimator of r. Since r is restricted to be an integer, choose
(r] as the estimate of r where (r] is the closest integer to ?. (r) 1s aleo
a consistent estimator of r given the stationarity of X. But since X is in
reality nonstationary, the consistency of the estimator is indeed a weak
property. The usefulness of r will be mainly determined by the variance of
'x}, which we do not give since we have not developed the covariance of N and
M. However, if in a certain application for a specified pair of parameters

r and A, the variances of N/T and M/T are reasonably small, then it is
worthwhile to find the exact variance of ; as a function of T by Monte Carlo
techniques, In the case of mean frequencies 20 cps < r/A 4LO cps, (r) had a 5%

standard deviation for T of less than a minute,
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Again from (16),

(33) 2-%{?37 (R(f1)) 12

is a consistent estimator of A,

Both ; and /;\ are relatively easy to compute from a sequence of discrete
observations on the clipped version of the time series X(t), Since in a great
many applications dealing with the above type of nonstationary time series,
the process is firat subjected to infinite clipping, the estimation method
gl ven above offers a practical procedure fx dealing with the changes of the

harmoni.c power levels over time,

L. Ergodic Results for the Rate of Axis-Crossings

Let N(T) be the number of sero-axis crossings of X(t) in the interval (0,T)
and assuming that E{X(t)} = O and E{N(T)} < 00, define
E{N(T
(34) B T
At first glance it looks as if B is a function of T, If X(t) is strictly
stationary then for all T, ths expected number of sero-crossings in any

T unit interval is the same as E{N(T)}. Now if we choose any unit of time

7 and let K be the positive integer K = T/7-, then from (34)

K
p =T ) 5 BN} - 7 E(N(T))
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and thus § is not a function of T,

Rice [7) shows that if X is Gaussian, B = 2( /fZS(f)dfll/z where S(f)
is the spectrum of X. However, in Rice's derivation and also in McFadden's (6],
it 1s assumed that a T can be found sufficiently small such that in the
interval (t, t + 77), the probability of exactly one axis-cressing is simply P
and the probability of two or more crossings can be neglected, This assumption
should be carefully considered since if X is vhite noise, there are infinitely
many seros in any interval, We will now give three simple lemmas which will
show that N(T)/T is a consistent estimate of B; that the second moment of the
spectrum of a Gaussian process (if it exists) can be estimated from discrete
clipping; and then give the wvariance of the consistent estimator,
Lexma 11 Let X(t) be a strictly stationary and metrically transitive (Doob(2))
random process and N(T) be the mmber of axis-crossings in the interwal (0,T),
Assume that E{N(T)} exists. Then as T — o

N(T)/T~8
with probability one,
Proof: Express T in integer multiples of a convenient unit U ,i.,e, T = KT for

a positive integer K. Let Nk denote the number of axis-crossings of X in the

interval ((k-1) v ,k T) for kel,...,K Thus we have

K
(35) MT) = B N
Since X is strictly stationary and metrically transitive, so is the discrete

process {Nk}' Thus we have the ergodic result that as K— oo, with probability
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I )
£ N — E
oy N N

(36) k2

But from (34), E{Nk} < 8T and thus by using (35) in (36) and dividing

by U we have the desired result.

Lemma 2t Let X(t) be a strictly stationary and metrically transitive

random process, Given a T , define the discrete process

. 1 if x(k T) >0
x(k'c')-{

-1 if X(k T)<O

for the integers k = 0, 1, ... . Let N(T, T ) denote the number of transi-
]
tions of X from 1 to -1 and fram -1 to 1 in the interval (0,T) where
L * ]
TeKYT. LetR (77) =E{X(k?) X ((k#1) T)} which does not depend

»
on k since X is strictly stationary and metrically transitive. Then

NT, T)/T=27T) P -rT(T))

with probability one as T— m.

»
Proof: By the ergodicity of X , the sample autocorrelation

» 1 K-1 [ »
(37) R (T) "X l X ((k*1) T) X (k T)
T k=0
]
cenverges with probability one to the autocorrelation R as K = T/2"— .,

*
Applying the definition of X to (37) we have
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Ry (T) Kt (x2n(, T) )

. .
and thus by dividing by T 4n the convergence B’l‘ — R , we have the desired

result,

Now suppose X(t) is stationary Gaussian process where E(X(t)} e 0and
E{Xz(t)} = 1, It then possesses the )roperties required for the lemmas.
Thus N(T)/T — 8 with probability one as T — oo and similarly for Lesma 2, From

Slepian (8] we can show Rice's (7] result that

69 pe Liano2 2] Panett

given that R is twice continuously differentiable at T e

But lawson and Uhlenbeck (5] show that
W0) R(T) =27 arcsin R(Z)
By series expansion of arcsin in powers of 7 , we can show from (40)

*

W)  ASRLT) Lol (pego)t/?
2 _(u) 2
o (RO -r27(0) T _,, g
(-"(0))%/2 2 7

where now we assume that R has the expansion

2 b
) RT)=1er(0) L o 2) (T ¢ o(T?)

From (39), (41) and Leama 2 we hava
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Lemma 3: Suppose X(t) is a stationary Caussian process with an auto-

correlation function R( ") as given by (42). Then with probability one

Uim lill.r_.o N(T.’t’)/’f'ﬂ

r—0

and
-2
lUn,_, o (N1, TI/T - ) « HI— 27 (1/Ps(t)at - _/hs(g)at)
s0 ()
where S(f) is the spectral density of X.
We will not derive the variance of N(T, T )/T as a function of T, T,

and 8, From (38), Lemma 3, and K = T/7~ we have

* 2 2 2
(&3) ERy (T)])° =1 -4pT *4ENT, T)/T) 2

e 0 (1)

ard from (37)

] 2 =2 K-1 K-l r » ] »
) By (T p o E B ) T) X () T 7))

Let D(x, T ) denote the conditional probability that X(t) orosses the
axis in the interval (x,x* T°) given that it orossed in (0, 7). For

Gaussian X(t), Rice [7) derives a function U(x) such that

c
D(x, ) = U(x) T ¢ O(Tz) and / U(x)dx = 1 as €¢— O,

-
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Since the probability of the process crossing the axis in the interval

(0, T) s pT+ 0(’(}’2),wet.hen have for ,k-J' =n> 1

(4se)  E{X (ke1) TIX (k )X ((341) 20X (3 7))
«U(nT) (7)) -200-U(nT) (8 2))
+ 1-U(nz) (8B T) =202-U(n 2) (B T))
s o(T?)
«l-4T +4UnT) e 0(Td)
and for k = J
(45b) E(X (ke1) 20X (k 2)X'( (341) 2 )x‘(a T)=1

Setting (45) in (44) and summing, we have

T/T
(W6) E(R(T)P =1upre Tt T Q-2)unz) T
nel
+ o( )
and thus from (43)
T/T
(k7) E(N(T, T )/T)° - —.f.p- r (1 --'% Ju(n )T

n=1

e
Letting T go to sero in (47) and since Ua f U(x)dx -%
°

we have

T
(48)  m__ o Var(N(T, 1 )/T] = 52~ j (1- &) u(x)ax
O+
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If X is Caussian with autocorrelation R( 2~ ), using Rice's derivation of U(x),

we have
Lomma 4
g, o Var(N(T, T)/1) = 623 f T (1)A(x)(1 + D(x)arctan D(x)Mx
O+
) T[.RZJWZ -
where

Ax) = (B (x) - ¢2(x)] M2 (- B3(x))/2

B(x) = 1 - R3(x) + (R"(0)]~% (R*(x)]?
C(x) = R(x) [R"(0))™} [(R*(x)1% + R"(x) [R"(0)]"! [1-R%(x))

D(x) = C(x) [B%(x) - ¢*(x)] ~ 1/2

This is similar to the result of Steinberg, et.al. (10]
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